
– For Unlimited Distribution –

P4 Style Examples

Curtis Flippin
Flippin Engineering

November 6, 2009

1 Engineering Talking Paper

This is the same example that was included in the P4 Technical Description. It is an
Engineer’s SWAG1 at a chemical process monitoring system. Engineers often must
become instant experts in a subject. This P4 paper is typical of the talking papers
that one might use to meet with area experts and get a better feel for the detailed
requirements and design issues.

1 (* P4 Simple Process Control Monitor Example

2 Curtis G. Flippin

3 22 October 2009

4 P4 Pseudocode (c)2001-2009 *)

5 (*

6 System physical plant consists of one or more production units.

7 A production unit accepts two reagents that are mixed in a

8 specific proportion in a reactor vessel under a specified

9 production standard temperature and pressure, PSTP.

10 The reagents react to form a new chemical that is output

11 from the reactor vessel.

12 The process is continuous.

13 *)

14 define: system as g(lambda) chemical production unit;

15
16 (* System Identification

17 Significant a priori knowledge of the system has been modeled

18 and incorporated via a set of nominal and optimum operating

19 parameters for each of the following production factors. *)

20 define: r1_r2 as input reagents proportions in GPM;

21 define: c1_r3 as production output quality characteristic one;

22 define: c2_r3 as production output quality characteristic two;

23 define: f_rate as production output flow rate in GPM;

1Scientific Wild Ass Guess

Curtis Flippin – For Unlimited Distribution – Flippin Engineering

24 define: pstp as production standard temperature and pressure;

25 define: a_spd as vessel mix agitator speed;

26
27 (* System Dynamics

28 The chemical reaction process combines two reagents, r1 and r2,

29 in unequal proportion, r1_r2, to produce a product, r3, with

30 the desired qualities, c1_r3 and c2_r3, in a quantity defined

31 as the flow rate, f_rate. The process is non-linear.

32 Production process controls consist of the following reactor

33 vessel controls.

34 *)

35 define: ctl_temperature as reactor temperator control;

36 define: ctl_pressure as reactor pressure control;

37 define: ctl_speed as reactor agitator speed;

38
39 (* System Performance

40 The objectives of the Process Control Monitor are to aid

41 human operators in controlling the reaction process and to

42 log system performance in a manner that will allow

43 consolidation with reaction control process logs for

44 later use as a learning tool for an adaptive control

45 system model. Performance is tracked as an index that is

46 a function of all the variable parameters plus the

47 control deltas over a defined ideal sampling rate.

48 *)

49 define: ip as performance index which is a function of

50 (r1_r2,c1_r3,c2_r3,f_rate,pstp,a_spd,

51 delta[temperature,pressure,speed]);

52 define: d_ip as delta(ip) memory;

53
54 function: delta_ip(c1,c2,f,t,p,d_ip);

55 (* Calculate delta(ip) from production factor arguments

56 and return in d_ip.

57 input arguments

58 c1 quality characteristic 1

59 c2 quality characteristic 2

60 f product flow rate

61 t reactor temperature

62 p reactor pressure

63 output arguments

64 d_ip delta of latest ip to new calculated ip.

65 d_ip is retained data that is used by this function

66 and elsewhere to determine the modification direction

67 information that is sent to the operator.

68 *)

69 end: delta_ip;

70
71 (* System Analysis

72 Operators perform the process analysis in response to data

73 they receive from the process control monitor. The monitor

P4 Style Examples 2

Curtis Flippin – For Unlimited Distribution – Flippin Engineering

74 does not determine corrective actions. It tracks performance, ip,

75 and compares the ip to both optimal and nominal performance

76 standards. Operator notices are transmitted to the operator

77 indicating the current level of system performance. There are

78 three levels of notices, optimal ip, nominal ip, and sub-nominal

79 ip. Notices include all system parameters and are logged along

80 with a timestamp.

81 *)

82 define: ip_optimum as optimum performance notice;

83 define: ip_nominal as nominal performance notice;

84 define: ip_subnominal as sub-nominal performance notice;

85
86 procedure: delay;

87 (* This procedure is a stand-in for the sampling rate

88 control process. An ideal rate will help to create

89 parameter delta’s that are well above ambient noise.

90 *)

91 end: delay;

92
93 procedure: monitor;

94
95 do: load initial known production parameters;

96
97 (* Monitor runs until the shutdown process orders

98 monitoring to stop.

99 *)

100 until: stop-order received from shutdown;

101 do: read sensors r1_r2, c1_r3, c2_r3, f_rate, a_spd,

102 temperature, pressure;

103 (* Mathematical function f(ip) is not yet defined *)

104 do: calculate ip performance index;

105 do: calculate delta_ip(,,,,,d_ip);

106 if: ip is outside optimum performance limits;

107 if: ip is outside nominal performance limits;

108 do: test ctl_temperature, ctl_pressure,

109 ctl_speed for sub-nominal readings;

110 if: any are sub-nominal;

111 ?? we may want to track time between

112 sub-nominal alarms in order to

113 elevate the alarm level for

114 persistent performance problems.

115 ??

116 do: set alarm status for sub-nominal

117 controls;

118 endif:

119 do: send ip_subnominal performance notice;

120 else:

121 do: send ip_nominal performance notice;

122 endif:

123 else:

P4 Style Examples 3

Curtis Flippin – For Unlimited Distribution – Flippin Engineering

124 do: send ip_optimum performance notice;

125 endif:

126 call: delay to maintain an ideal 1 cps sample rate;

127 repeat:

128
129 end: monitor;

130
131 end: Process Control Monitor

2 System Test Plan

An informal system test plan proposal is put forth using P4. Note that it contains only
comments.

1 (* System Test Planning

2 Curtis G. Flippin

3 Senior System Engineer

4 Flippin Engineering

5 Paylo Sellhi, California

6 *)

7 (*

8 System Test Planning Proposal (Draft)

9 3 November 2009

10 *)

11
12 (* The Project Design and Development Phase has just begun

13 and attention must be given to the System Test Plan.

14 Engineering Testing will begin very soon and continue

15 through Qualification Testing. We will need to have

16 a testing framework in place to define and manage the

17 tests. This document provides a proposed starting

18 point for Test Planning.

19 *)

20
21 (* The Level 1 Test Plan should contain the following

22 elements:

23 1. Test Objectives

24 2. Participating Agencies and Responsibilities

25 3. Test Group Organization and Functions

26 4. Operating Procedures, Methods, and Controls

27 5. Test Schedules

28 *)

29
30 (* The Detailed Test Plan will need to address:

31 1. Detailed Test Objectives

32 2. Test Responsibilities

33 3. Test Support

34 4. Items and Steps in Test

35 5. Test Methods

P4 Style Examples 4

Curtis Flippin – For Unlimited Distribution – Flippin Engineering

36 6. Typical Test Measurement

37 7. Test Results Data Reduction

38 8. Criteria for Success

39 9. Test Operations Plan

40 10. Test Operations Schedule

41 11. Test Operations PERT Charts as Required

42 *)

43
44 (* TEST OBJECTIVES

45 To include:

46 1.1 Functional Requirements

47 1.2 Hardware Capabilities and Limitations

48 1.3 Reliability

49 1.4 System Technical Documentation

50 1.5 Evaluation of Operations and Maintenance Plans

51 1.6 Safety

52 1.7 Training

53 *)

3 Merge Sort Algorithm

P4 is a good tool for defining non-mathematical algorithms. It is generally more useful
because it eliminates the dependency on a specific programming language implemen-
tation.

1 (* Two-Way Merge Sort Algorithm

2 Curtis Flippin

3 Flippin Engineering

4 4 November 2009

5 *)

6 (*

7 The two-way merge sort basically divides a list

8 having at least two items into two roughly equal

9 sublists. Each sublist is sorted by recursively

10 applying the merge() function which will produce

11 a number of sublists. Eventually, all the sublists

12 become merged into a single sorted list.

13 This is an (nlogn) sort and its been around for

14 many years.

15 *)

16 function: merge(list);

17 (* Two-Way Merge Function *)

18
19 if: the list contains less than two items;

20 do: return (list) because it is sorted;

21 endif:

22
23 define: left as a list;

24 define: right as a list;

P4 Style Examples 5

Curtis Flippin – For Unlimited Distribution – Flippin Engineering

25 define: result as a list;

26
27 (* The list is partitioned into two sublists *)

28 define: middle as integer (list_length / 2);

29 do: put all list items up to middle into left;

30 do: put all list items after middle into right;

31
32 (* Divide and Conquer by recursively performing

33 merges on successive sublists *)

34 do: left = merge(left);

35 do: right = merge(right);

36
37 (* On the last pass, merge the two remaining lists

38 into one final sorted list *)

39 if: the last item in left > the first item in right;

40 do: return (result = merge(left) + merge(right));

41 else:

42 do: return (result = left + right);

43 endif:

44
45 end: merge();

4 Code Style

If need be, P4 documents can be made to look very much like code. This short
temperature scale conversion program is an example with a code-like style.

1 (* Celsius/Fahrenheit Temperature Converter

2 Curtis Flippin

3 Flippin Engineering

4 5 October 2009

5 *)

6
7 (*

8 This program accepts a temperature as input and

9 types the conversion in both directions.

10 Celcius to Fahrenheit and

11 Fahrenheit to Celsius.

12 The user never needs to specify which temperature

13 scale is intended.

14 *)

15 function: getinput(number);

16 do: accept an input number and

17 return number;

18 end: getinput();

19
20 procedure: temperature_converter;

21 (* Accept input temperature to convert *)

22 getinput(temperature)

P4 Style Examples 6

Curtis Flippin – For Unlimited Distribution – Flippin Engineering

23
24 define: celsius as number;

25 define: fahrenheit as number;

26 (* Convert Fahrenheit to Celsius *)

27 do: celsius = (5 * (temperature - 32)) / 9 ;

28 (* Convert Celsius to Fahrenheit *)

29 do: fahrenheit = ((9 * temperature) / 5) + 32 ;

30
31 (* Print the results *)

32 do: print temperature, " to Celsius = ", celcius;

33 do: print temperature, " to Fahrenheit = ", fahrenheit;

34
35 end: temperature_converter;

5 A Question of Logic

This last example shows a slightly different style. The more common Symbolic Logic
symbols are defined via P4 functions. There is no real program. Functions are used
as a vehicle for describing the logic definitions of these symbols.

1 (* A Question of Logic

2 Curtis Flippin

3 Flippin Engineering

4 6 November 2009

5 *)

6 (*

7 Symbolic Logic defined as functions.

8 The arguments are hypotheses that may

9 also be complex symbolic logic terms.

10 The functions return a conclusion of

11 true or false based upon evaluation of

12 the argument(s).

13 *)(*

14 (A ^ B) is ^(A,B)

15 (A v B) is v(A,B)

16 ~A is ~(A)

17 A -> B is ->(A,B)

18 A <-> B is <->(A,B)

19 *)(*

20 (A ^ ~B) becomes C = ~B, ^(A,C)

21 ...and so on.

22 *)(*

23 Altogether, a simple but not really

24 useful exercise except to illustrate

25 using P4 functions to describe a

26 discrete, limited linear grammar.

27 *)

28 function: ^(a,b);

29 (* Logical connective ’AND’, (A ^ B) *)

P4 Style Examples 7

Curtis Flippin – For Unlimited Distribution – Flippin Engineering

30 if: a = true;

31 if: b = true;

32 do: return true;

33 else:

34 do: return false;

35 endif:

36 else:

37 do: return false;

38 endif:

39 end: ^();

40
41 function: v(a,b);

42 (* Logical connective ’OR’, (A v B) *)

43 if: a = false;

44 if: b = false;

45 do: return false;

46 else:

47 do: return true;

48 endif:

49 else:

50 do: return true;

51 endif:

52 end: v();

53
54 function: ~(a);

55 (* Logical connective ’NOT’, ~(A) *)

56 if: a = false;

57 do: return true;

58 else:

59 do: return false;

60 endif:

61 end: ~();

62
63 function: ->(a,b);

64 (* Logical implication ’IF...THEN’, A -> B *)

65 if: a = true;

66 do: return true;

67 (* Means B is also true *)

68 else:

69 do: return false;

70 (* Means nothing can be implied about B *)

71 endif:

72 end: ->();

73
74 function: <->(a,b);

75 (* Logical connective ’IF...AND ONLY IF’, (A <-> B) *)

76 if: b = true;

77 (* Then A is true *)

78 do: return true;

79 else:

P4 Style Examples 8

Curtis Flippin – For Unlimited Distribution – Flippin Engineering

80 (* Otherwise, A is false *)

81 do: return false;

82 endif:

83 end: <->();

84
85 end:

P4 Style Examples 9

	Engineering Talking Paper
	System Test Plan
	Merge Sort Algorithm
	Code Style
	A Question of Logic

